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Abstract

We find that the estimation of the market expected return benefits significantly from en-

riching the information set we use, with increasingly finer detail regarding the shape of the

physical and risk-neutral distributions and the shape discrepancy between the two. Assuming

the existence of a monotonic projected pricing kernel we extend Duan and Zhang’s (2014) the-

oretical model to a general system of equations that relates physical cumulants of any order to

risk-neutral ones through the projected relative risk aversion coeffi cient. Using stock and option

data from the S&P 500 index we employ our general specification to estimate the ex-ante market

risk premium for the period 2001-2010 in a monthly frequency. The empirical results strongly

support our hypothesis both in a statistical sense and in the context of the present value identity

that associates dividend-price ratio to expected returns and dividend growth rates.
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1 Introduction

The expected return of an asset (denoted as ER henceforth) is one of the most important concepts

in the financial literature, as it constitutes a central input in asset pricing and in risk-return decision

making. By its very definition, it is forward-looking in nature, it depends on the systematic risk of

the asset and it is practically unobservable.

The most common method for estimating the ER and its associated risk premium amounts to

calculating the average value of historical realized returns using a long estimation period. However,

this approach is problematic for at least three reasons: First, the average realized return is an

unconditional estimate, that becomes equal to its conditional counterpart only under the assump-

tion of i.i.d. innovations. Given that a number of studies document ERs being time-varying and

persistent (see Cochrane (2011), inter alia), it follows that the conditional ER is not very likely

to coincide with the ex-post unconditional one. Second, this ex-post long-run estimate does not

take into account short-term changes in market conditions (see Merton (1980)). Third, it is highly

probable that the risk premium, being an ex-ante quantity, captures a level of risk which is related

to the occurrence of some bad states of nature that will not be realized in the sample after all (the

well-known peso problem) (see Brown, Goetzmann and Ross (1995), inter alia).

To overcome these deficiencies, three alternative routes were proposed in the literature. The

first uses survey on academics, investors or business managers to get their view on the ER (see

Welch (2000) and Graham and Harvey (2007)). The second employs the present value identity to

estimate the implied cost of equity capital from current stock prices and analysts forecasts for future

cash flows (see Pastor, Sinha and Swaminathan (2008)). Both these methodologies are subject to

a number of limitations that are qualitatively similar. On one hand, surveys are expressions of

personal opinion and as such, they suffer from sample selection bias that is diffi cult to quantify. On

the other hand, analyst forecasts can also be prone to biases, while the implied cost of capital does

not generally coincide with the one-period ER, even though it conveys information comparable to

it (see Chen, Da and Zhao (2013)).

This leaves a third route for estimating ERs that combines information from the stock and

options markets, along with either a parametric option pricing model (see Santa-Clara and Yan

(2010)) or a semi-parametric procedure (see Duan and Zhang (2014)). In the context of this

third approach, this paper provides new evidence suggesting that the estimation procedure of

the ER benefits significantly - in many ways - once we enrich the information set we use with

increasingly finer detail regarding the shape of the physical and risk-neutral distributions and the

shape discrepancy between the two. Our setup leads us to codify the shape and the discrepancy of

the two distributions by means of their respective cumulants.

We build our theoretical framework assuming the existence of a monotonic projected pricing

kernel motivated by the well-known power/logarithmic utility function. As our starting point, we

extend the theoretical model of Duan and Zhang (2014) to a general system of equations that relates
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cumulants of the physical distribution of the market portfolio log-returns (designated henceforth as

physical cumulants) of any order to those of the risk-neutral distribution (denoted as risk-neutral

cumulants) through the projected relative risk aversion coeffi cient (denoted as PRRAC henceforth).

The implications of this relation are twofold. First, the ER of the market portfolio log-return

distribution, and its associated market risk premium (denoted as MRP henceforth), is connected to

higher-order physical cumulants and the PRRAC. That is, investors require a higher compensation

to hold the market portfolio, the more their aversion towards risk increase and/or the more their

expectations about future returns are characterized by higher level of volatility, more negative

skewness and higher excess kurtosis. Second, and most important, it restricts the shape discrepancy

between the physical and risk-neutral distributions by means of the PRRAC. This last model

implication is very intuitive: If we want to infer the PRRAC from the physical and risk-neutral

distributions, it is expedient to use as much information as we can about their shape discrepancy.

Our empirical findings are strongly supportive of our theoretical framework. Qualitatively

speaking, the estimated MRP seems sensible, being always positive, time-varying, persistent and

counter-cyclical with its annualized values ranging between less than 1% and around 100%. As

expected it increases during the two financial turmoil periods (the burst of the Dot-Com bubble

in 2002 and the sub-prime mortgage crisis from 2007 to 2009), reaching its highest peak at the

aftermath of Lehman’s debacle. Moreover, we produce conditional ERs of which the average value is

significantly higher (about 17.5%) than the unconditional ex-post one (around 8%). This difference

is in line with the peso problem explanation, stating that the average ex-ante MRP should exceed

the average ex-post one, simply because the former price the fear of possible catastrophic states of

the economy that cannot be traced in the latter.

Statistically, our analysis provides strong evidence that when we allow our econometric speci-

fication to contain higher-order cumulants (thus providing a finer description of the shape of the

two distributions) and/or when we impose a larger number of restrictions about the shape discrep-

ancy between the physical and the risk-neutral distributions, the GMM estimator of the PRRAC

becomes more effi cient.

Moreover, this paper suggests a new approach to assess the plausibility of competing ER es-

timates in the context of the present value identity. In that exercise, we find that only the ERs

produced from the augmented information sets, are consistent with the predictions of the theory

associating dividend-price ratio to ERs and dividend growth rates. This step is very important

because it confirms our results, based on a framework that is independent from the pricing kernel

assumption we have made, while it also employs a set of data that has not been used in the estima-

tion of ERs. Among our other contributions, there is distinct novelty in our testing methodology

for this particular step, since it constitutes the first time (to the best of our knowledge) that the

relationship between observed dividend-price ratio and ERs is directly examined. In the literature,

similar tests rely mostly on the traditional predictive regression approach, which is known to suffer

from various shortcomings (see Koijen and Van Nieuwerburgh (2011) for a review).
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Our theoretical approach is closely related to previous studies that also used stock and option

data to estimate the ex-ante MRP. In contrast to Santa-Clara and Yan (2010) our methodology does

not rely on any parametric option pricing model. Compared to Duan and Zhang’s (2014) paper,

while our system specification is based on the same theoretical premises (i.e., the same pricing

kernel), it does extend their setup to a larger number of equations and cumulant restrictions. This

enables us to produce more accurate estimates of the PRRAC which, in turn, generate ER estimates

that satisfy almost perfectly the present value identity.

The paper is organized as follows. Section 2 derives the theoretical model. Section 3 presents

the econometric formulation for estimating market ERs and the associated ex-ante MRP. Section

4 describes the data and discuss the estimates of the MRP. Section 5 compares the ER time series

estimates on the basis of the present value identity. Section 6 concludes the paper. All of the

derivations are given in a technical appendix.

2 Theoretical model

Consider an arbitrage-free economy with a pricing kernel Mt (rt,T ) projected onto the space of the

market portfolio log-return rt,T ≡ ln(ST /St), where ST (or St) denotes the market portfolio price

at the future time T (or at the current time t).1 Then, the conditional on the current market

information set It distribution of rt,T under the risk-neutral measure Q, denoted as fQt (rt,T ), is

given as:

fQt (rt,T ) = erf τMt (rt,T ) fPt (rt,T ) . (1)

In formula (1), fPt (rt,T ) is the conditional distribution of rt,T under the physical (objective) measure

P , rf is the annualized continuously compounded risk-free rate and τ = T − t. If we further assume
that Mt (rt,T ) is implied by a power/logarithmic utility function, i.e., Mt (rt,T ) = βe−γrt,T , where

β is a scaling factor and γ is the PRRAC,2 it follows that we can express formula (1) in terms of

moment-generating functions as:

mQ
t (u) = lnβ + rfτ +mP

t (u− γ) . (2)

In formula (2), mP
t (u) = lnEPt [eurt,T ] and mQ

t (u) = lnEQt [eurt,T ] stand for the logarithms of the

conditional moment-generating function of rt,T under measures P and Q, respectively. Based on

the previous relation, we can deduce a system of equations that relates the two measures in terms

1This pricing kernel is known as the projected pricing kernel (see Rosenberg and Engle (2002)). Under the
assumptions that the asset level is equal to the aggregate wealth and that investors have a finite horizon, the
projected pricing kernel is equal to the original pricing kernel (see, e.g. Ait-Sahalia and Lo (2000)).

2The projected pricing kernel implied by a power/logarithmic utility has been employed in many recent studies
of the literature to estimate the risk aversion coeffi cient and the log-return distribution under measure P , without
specifying any state variable (see Rosenberg and Engle (2002), Bakshi, Kapadia and Madan (2003) and Bliss and
Panigirtzoglou (2004), inter alia).
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of their cumulants. This is given in the following Proposition.

Proposition 1 Let kQt,n and kPt,n be the n
th-order cumulants of the τ -period log-return rt,T distri-

bution conditional on the current market information set It under the physical P and risk-neutral

Q measure, respectively. Then, the following relation holds:

kQt,n =

∞∑
m=0

kPt,n+m

(−γ)m

m!
, ∀ n ∈ N. (3)

Individual approximate equations of this system has been proved in the literature during the

previous years. In particular, Bakshi, Kapadia and Madan (2003), Bakshi and Madan (2006) and

Duan and Zhang (2014) give approximate counterparts of (3) based on variance, skewness and

kurtosis coeffi cients for n = 3, n = 2 and n = 1, respectively. Equation (3) is an exact formula that

can be employed for all n. In that context, Proposition 1 can be seen as refining and generalizing

existing results in the literature.

Note also here that there exist an equivalent, to (3), formula that relates physical cumulants to

risk-neutral ones through the PRRAC (see Rompolis and Tzavalis (2010)). This is given as follows:

kPt,n =

∞∑
m=0

kQt,n+m

γm

m!
, ∀ n ∈ N. (4)

Formulas (3) and (4) provides a unified framework that restricts the risk-neutral (or physical)

distribution by taking its physical (or risk-neutral) counterpart and γ as given. Most importantly, it

associates the premium that investors are requiring so as to take on risk with higher-order physical

(or risk-neutral) cumulants and the PRRAC. If the latter is unknown and we know instead the

cumulants of both distributions, then we can use a set of equations implied by formula (3) or (4)

first to estimate γ and then to retrieve the MRP.

For n = 1 formula (3) implies that:

kPt,1 − k
Q
t,1 = γkPt,2 −

γ2

2!
kPt,3 +

γ3

3!
kPt,4 + ... (5)

This clearly indicates that the MRP, defined as kPt,1 − kQt,1, is positively related to the physical

conditional variance, kPt,2, and excess kurtosis, k
P
t,4 and negatively related to the skewness of the

distribution, measured by kPt,3.
3 The result is intuitive, since it stipulates that the MRP increases

when the likely losses become increasingly more severe. From the viewpoint of portfolio manage-

ment, this direct association of ER kPt,1 to higher-order physical cumulants is supportive of recent

advances in portfolio optimization that detract from the Markowitz paradigm (see Goh, Lim, Sim

3More precisely we can write the skewness and kurtosis coeffi cients as SkPt =
kPt,3

(kPt,2)
3/2 and Ku

P
t = 3 +

kPt,4

(kPt,2)
2 ,

respectively.
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and Zhang (2012), inter alia).4 Formula (5) also indicates that if the log-return rt,T follows the

normal distribution, which implies that kPt,n = 0 for n > 2, then the MRP can be written as:

kPt,1 − k
Q
t,1 = γkPt,2, (6)

which a well-known result implied by the CAPM and the Black-Scholes model assumptions.

Formula (5) indicates that knowledge of γ and of higher-order physical cumulants provides an

estimate of the ex-ante MRP. Note here that evaluating formula (4) for n = 1 gives an equivalent

way to estimate the same quantity, if we take as given the PRRAC and risk-neutral cumulants:

kPt,1 − k
Q
t,1 = γkQt,2 +

γ2

2!
kQt,3 +

γ3

3!
kQt,4 + ... (7)

In the empirical part of the paper, we will apply alternatively formulas (5) and (7) so as to calculate

the ex-ante MRP.

To estimate the PRRAC γ, we employ the information contained in the rest of the equations

in (3) or (4), which correspond to higher-order cumulants. The intuition behind this step is very

interesting. By rewriting each equation in (3) or (4) for n ≥ 2, in terms of difference kPt,n − k
Q
t,n,

we retrieve a system of equations restricting the premia between the cumulants of the same order.

Specifically, for n = 2 formulas (3) and (4) lead to two equivalent expressions for the variance risk

premium,

kPt,2 − k
Q
t,2 = γkPt,3 −

γ2

2!
kPt,4 + ... (8)

and

kPt,2 − k
Q
t,2 = γkQt,3 +

γ2

2!
kQt,4 + ..., (9)

4Note here that Duan and Zhang (2014) define the MRP as kPt,1 − (rf − δ) τ , where δ denotes the annualized
continuously compounded dividend yield. However, since kPt,1 is the mean of the log-return distribution we argue that
the corresponding moment under risk-neutral measure Q, kQt,1, should be subtracted in order to appropriately define
the MRP. The latter is the expected continuously compounded return under Q. In contrast, rf − δ is the annualized
expected percentage price change which occurs in a very short period of time.
Given that the risk-neutral mean can be written as:

kQt,1 = (rf − δ) τ −
∞∑
m=2

kQt,m
m!

(see Chalamandaris and Rompolis (2012) for the proof), the ex-ante MRP is equal to:

kPt,1 − kQt,1 = kPt,1 − (rf − δ) τ +

∞∑
m=2

kQt,m
m!

.

Due to Jensen’s inequality, it can be easily shown that kQt,1 < (rf − δ) τ , implying that Duan and Zhang’s (2014)
estimates of the MRP will be consistently lower than ours.
Moreover, the definition of Duan and Zhang (2014) for the MRP implies the rather uncomfortable result that this

is different from zero when investors are risk-neutral, i.e., γ = 0.
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respectively. Equation (8) indicates that the empirically documented difference between physical

and risk-neutral variance (see Christensen and Prabhala (1998), inter alia) can be attributed to

higher than second-order physical cumulants. According to the model the variance will become

equal under the two measures only when rt,T follows the normal distribution (kPt,n = 0 for n > 2)

and/or when the investor is risk-neutral (γ = 0). The empirically documented negative variance

risk premium kPt,2 − k
Q
t,2 < 0 can be attributed by the model to negative skewness (i.e., kPt,3 < 0)

and/or positive excess kurtosis (i.e., kPt,4 > 0). Equivalently, equation (9) indicates that the negative

variance risk premium can be explained by the negative skewness (i.e., kQt,3 < 0) of the risk-neutral

distribution (see Rompolis and Tzavalis (2010)).

Likewise, for n = 3, we get expressions for the third-order cumulant risk premium,

kPt,3 − k
Q
t,3 = γkPt,4 + ... (10)

and

kPt,3 − k
Q
t,3 = γkQt,4 + ..., (11)

respectively, which is related to the difference of the skewness of the two distributions (also known

in the literature as the skewness premium). Both formulas indicate that as soon as kQt,4 > 0 and

kPt,4 > 0 (i.e., the log-return distribution exhibits leptokurtosis under both measures) then the

skewness premium is positive. By continuing this procedure for n ≥ 4, we obtain expressions for

risk premia corresponding to cumulants of increasingly higher order. As the set of these premia

describe in essence the shape discrepancy between the two distributions, it becomes clear that the

estimation of γ, practically depends on that information.

3 Econometric formulation

As already discussed, before we proceed to the estimation of the MRP, we first need to extract

higher than first-order physical and risk-neutral cumulants and the PRRAC γ from our data. In

this section we will describe the econometric formulation employed to that purpose.

3.1 Estimating higher-order physical cumulants

We estimate the 1-month forward-looking physical cumulants of the log-return distribution in

a monthly frequency with the help of the Filtered Historical Simulation (FHS) as described in

Barone-Adesi, Engle and Mancini (2008). This approach combines the well-known properties of a

GARCH-family model (stochastic, mean-reverting and asymmetric volatility dynamics) with the

empirical innovation distribution, which is able to fully capture various types of asymmetries and

non-normalities observed in practice (see Wang, Zhang and Zhou (2015)). This way, we allow the

log-return distribution to take on shapes that may not be possible under parametric specifications.

It is no surprise, that methods of this type have been found in the recent literature to provide a
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better basis for market-risk stress testing (see Basu (2011)). In essence, the method aims at the

construction of the physical distribution of returns using effi ciently the information contained in

the historical path observed at a higher frequency relative to the horizon considered. It accom-

plishes that by combining inference from a calibrated conditional variance model and the empirical

distribution of the innovations that drive the return process.

Let’s denote as rt the daily log-return for which we assume a general ARMA process νt, i.e.,

rt = νt + at (12)

where at = σt · εt is conditionally heteroskedastic following mean-reverting, stochastic volatility
dynamics and εt is a general white noise.

The first stage of the method is a straightforward, if rather cumbersome, econometric exercise of

identifying the joint ARMA / variance model (νt / σt) that best explains the conditional mean and

variance dynamics of the return process. Given that we aim to estimate a forward-looking physical

distribution at each observation date, we allow ourselves to use only past data to infer the appro-

priate specification. We follow the Box-Jenkins procedure from scratch for each of these dates using

a moving window that spans the 2 calendar years (about 500 observations {rt−499, rt−498, ...rt})
that precede our data point. In order to arrive at the "best model" on each of these times, we

examine a large number of candidate models that range from the simplest White Noise rt = σ · εt
to the more elaborate ARMA(p,q)-GARCH / EGARCH/ Threshold - GARCH (or GJR) specifica-

tions. All the latter address the volatility clustering effect of the observed returns, while Nelson’s

EGARCH (1991) and Glosten, Jagannathan and Runkle’s Threshold - GARCH model (see Glosten,

Jagannathan and Runkle (1993)) in addition allow for asymmetries in the return distribution. The

candidate model set completed the GARCH-In-Mean specification that associates the conditional

mean return with its conditional volatility. The total number of models considered on each data

point is 688, half of which assume normal deviates in the log-likelihood function and the other

half t-Student updates. From all the models that were deemed as "adequate"5 ones we choose the

"best" based on the Bayesian Information Criterion (BIC) which generally tends to pick the most

parsimonious specification.

Not surprisingly in almost 94% of our data points, the algorithm converged to the selection of

an asymmetrical volatility model (EGARCH or GJR) while in 75% of the cases an ARMA(0,0)

specification was chosen for the mean equation as shown in Table 1. Distribution-wise, the selected

models are more evenly divided among normal (55%) and t-Student (45%) innovation distributions.

At the second stage of any FHS application, the fitted model serves as the filter that helps

extract the primitive innovations εt that appeared to drive the process in its observed history.

Therein exactly lies the strength of the method: The fact that the filtered innovations εt are not

5A model is characterized as "adequate" if its standardized residuals exhibit neither autocorrelation nor het-
eroskedasticity. We tested for the existence of the first using the Q-test and for the existence of the second using the
ARCH-test.

8



bound to follow a specific form of randomness permits any singularity of the data that falls out of

the standard norms of the parametric distribution to be modelled in the empirical density of the

filtered innovations. As a result, the simulated distribution of rt,T that we generate at the third

stage of the method is much richer in the values and patterns of cumulants that can be attained

compared to its standard parametric counterparts.

The Monte Carlo simulation of that third stage is implemented by propagating random boot-

straps from the set of the filtered innovations εt as sequences of primitive shocks that drive the

fitted model from its current state at time t to its forward state at time t+τ . The time-aggregation

on each path i provided us with 100,000 simulated monthly returns, denoted as r(i)
t,T , of which we

estimate the cumulants of its distribution.6

The problem of choosing the length of the estimation window in our application is typical

of the trade-off between having a suffi ciently large sample to estimate a reasonably rich variance

model and still retain only the most recent history so as to avoid producing "averaged" empirical

distributions that bear little resemblance to the present. An important factor in our decision to use

a moving window of about 500 daily returns rather than a longer or shorter one was the prevailing

Risk-Management practice of using a history of about 2 years to calculate Value at Risk (e.g.

RiskMetriks).

The main benefit of our flexible-model approach as opposed to using a single filter specifica-

tion throughout the entire sample, as usually done in the literature (see Barone-Adesi, Engle and

Mancini (2008), inter alia), is that we produce physical distributions, the cumulants of which, evolve

in a much smoother way than otherwise. Indeed, if we are to calibrate the same model specification

for all the months in our sample, then on those data points where this specification is smaller in

size than the “locally optimal”mean/volatility model, the filtered innovations will have to be by

construction autocorrelated or larger in magnitude so as to compensate for the omitted variables

in the return dynamics. By allowing structural flexibility in the filter specification, we avoid both

autocorrelation and outliers in the filtered innovations, which will in all certainty bias the inferred

empirical distribution. On the other hand, in those cases where the single-model specification is

larger in number of parameters than the "locally optimal" ones, the simulated variance of returns

from that single-model will become inflated due to the redundant (statistically insignificant) model

parameters that contaminate the sample with model noise.7

Note here that the FHS also generates an estimate of the mean of the physical distribution,

i.e., kPt,1. However, this estimate is not economically meaningful, as it often takes negative values

6Starting from the non-central moment estimates µPt,n = 1
N

∑N
i=1

(
r
(i)
t,T

)n
of different order n, where N = 100, 000,

we calculate the nth-order cumulant of the physical distribution kPt,n by applying the well-known k-Statistics estima-
tors (see Kenney and Keeping (1951)).

7For example consider simulating an ARMA(1,1)/GARCH(1,2) in a specific subsample where the locally optimal
model is only an ARMA(0,0)/GARCH(1,1) specification: The empirical distribution that this simulation will produce
will be contaminated by a noise component, whose source are the statistically insignificant parameters of the larger
model (ARMA terms and the second ARCH term), the value of which however small, will be in all likelihood different
from zero.
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being the sample average of the simulated monthly returns r(i)
t,T . Nonetheless, this estimate, along

with µPt,n for n > 2, is used in the context of the k-Statistics estimators to calculate higher-

order physical cumulants kPt,n for n > 2. This poses no problem however, given that higher-order

cumulants are mean-invariant. This implies that their values do not depend on the mean of the

distribution, notwithstanding whether this mean is the ex-ante ER of the physical measure or the

sample average of the simulated returns.

3.2 Retrieving risk-neutral cumulants from option prices

Ex-ante estimates of non-central risk-neutral moments µQt,n can be directly obtained from out-

of-the-money (OTM) European call and put prices employing the formulas suggested by Bakshi,

Kapadia and Madan (2003) for n = 1, 2, 3, 4 and extended by Rompolis and Tzavalis (2008) to any

order n as

µQt,1 = e(rf−δ)τ − 1− erf τ
[∫ +∞

St

1

K2
Ct(τ ,K)dK +

∫ St

0

1

K2
Pt(τ ,K)dK

]
, for n = 1,

µQt,n = erf τ

{∫ +∞

St

n

K2

[
ln

(
K

St

)]n−2 [
n− 1− ln

(
K

St

)]
Ct(τ ,K)dK (13)

+

∫ St

0

n

K2

[
ln

(
K

St

)]n−2 [
n− 1− ln

(
K

St

)]
Pt(τ ,K)dK

}
, for n > 2.

where Ct(τ ,K) and Pt(τ ,K) denote the European call and put option prices with strike price K

and maturity interval τ = T − t. As before rf denotes the annual return of the risk-free asset

and δ denotes the continuously compounded dividend yield. As these formulas employ integrals

of continuous functions to retrieve the values of the risk-neutral moments based on them, we

can employ cubic splines to interpolate the implied by our option prices volatilities between two

different points of the data. Due to the lack of option prices at 0 and +∞, we can extrapolate the
implied volatilities constantly over the intervals (0,Kmin] and [Kmax,+∞), where Kmin and Kmax

is the minimum and maximum strike prices given by our data, respectively. Ex-ante risk-neutral

cumulants kQt,n can be obtained using the k-Statistics estimators in accordance with the non-central

moment estimates given by (13).

3.3 Estimating the projected relative risk aversion coeffi cient

The next step of our procedure is to estimate the PRRAC. To this end, we can rely on the theoretical

results of Section 2. More specifically, formula (3) or (4) for n > 2 can form a system of equations

from which we can extract an estimate of γ. Following Bakshi and Madan (2006) we adopt a GMM

estimation procedure. Let It−1 be a set of instruments whose values are known at time t− 1. Then

GMM estimation can be performed using the following orthogonality conditions implied by formula
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(3):

E

[
kP,Qt,N +

M∑
m=1

kPt,m+2,m+N

(−γ)m

m!

∣∣∣∣∣ It−1

]
= 0, (14)

where kP,Qt,N =
(
kPt,2 − k

Q
t,2, ..., k

P
t,N − k

Q
t,N

)′
and kPt,m+2,m+N =

(
kPt,m+2, ..., k

P
t,m+N

)′
. Similarly, the

orthogonality conditions implied by (4) can be written as:

E

[
kP,Qt,N −

M∑
m=1

kQt,m+2,m+N

γm

m!

∣∣∣∣∣ It−1

]
= 0, (15)

where kQt,m+2,m+N =
(
kQt,m+2, ..., k

Q
t,m+N

)′
.

Bakshi and Madan (2006) and Duan and Zhang (2014) used (14) for N = 2 and M = 2 (i.e.,

a second-order approximation of formula (8)) to estimate the PRRAC. For the same purpose,

Rompolis and Tzavalis (2010) employed (15) for N = 2 andM = 2 (i.e., a second-order approxima-

tion of formula (9)). Both of these approaches provide a single-equation estimation of γ based on

restricting the difference between the physical and risk-neutral variances by means of the physical

or risk-neutral skewness and excess kurtosis..

We generalize this approach in two fronts. First, we increase the number of regressorsM in (14)

and (15). Theoretically, this will enables us to retrieve a consistent estimator of γ with a weaker

set of instruments It−1. Second, we increase the number of equations N in (14) and (15). This step

is very important for the purpose of our analysis, because, if additional information concerning the

discrepancy between physical and risk-neutral distributions is important for the estimation of γ,

then the inclusion of the additional equations will make the GMM estimator more effi cient. This will

happen simply because the additional moment restrictions imposed through these equations carry

significant information for the shape of the pricing kernel. On the other hand, we could find that the

equations corresponding to the differences in the higher-order cumulants between the two measures

contain mostly noise which is independent of γ. In that case, the effi ciency of the augmented system

estimator would deteriorate relative to the single-equation benchmark, indicating that the PRRAC

(according to the assumed pricing kernel) determines only the difference of the respective variances

and not much else concerning the shape of the two distributions. If this is true, then the assumption

of the existence of a monotonic pricing kernel would not be supported by the data.

4 Empirical analysis

In this section, using the aforementioned econometric formulation and data from the S&P 500 index

for the period 1996-2010, we estimate the ex-ante MRP for a 1-month investment horizon.
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4.1 The data

Our empirical analysis uses index daily returns and cross-section sets on European option prices for

the S&P 500 index. We consider closing prices of put and call options for the third Wednesday of

each month from January 1996 to October 2010. To address liquidity and quality issues in the prices

of deep-OTM options we take a number of precautionary steps in the data pre-processing stage of

our analysis. That is, to select our final sample, we apply several data filter. First, option quotes

less than 3/8 are excluded from the sample. These prices may not reflect true option value due to

proximity to tick size. Second, we have excluded options contracts that had zero trading volume

and/or open interest. Third, options violating the boundary conditions are eliminated from the

sample. The purpose of these filters is to make our risk-neutral cumulants estimates as insensitive

as possible to market microstructure and liquidity biases. The option data are downloaded from

OptionMetrics Ivy DB. The maturity interval of these option prices is approximately equal to

one calendar month (i.e. roughly twenty two trading days). Hence, the estimates of risk-neutral

cumulants derived by the above option data sets concern distributions of returns that exhibit no

overlap in time.

As the risk-free interest rate and dividend yield we use the estimates employed in the Option-

Metrics calculations. The interest rate is derived from British Banker’s Association LIBOR rates

and settlement prices of Chicago Mercantile Exchange Eurodollar futures. The dividend yield is

estimated by the put-call parity relation of at-the-money option contracts. We refer the reader to

the Ivy DB reference manual for further details.

4.2 Physical and risk-neutral cumulants estimates

Table 2 presents summary statistics for the 1-month ahead physical and risk-neutral cumulants

monthly estimates that we obtained in the first stage of our analysis. For expositional reasons

we report only the descriptive statistics for the second (i.e., the variance), third and fourth-order

cumulants. Note here, that in the estimation of γ we use physical and risk-neutral cumulants up to

order 10. We also report summary statistics for the annualized volatility, the skewness and kurtosis

coeffi cients of the log-return distribution under both measures. Figure 1 graphically presents the

time series of the inferred physical and risk-neutral cumulants. The results in both the table and

the figure indicate that the risk-neutral variance is generally higher than the physical one, which is

consistent with previous findings in the literature. Third-order cumulant estimates, which account

for the skewness of the distribution, are negative under both measures. However, kQt,3 estimates are

generally higher in absolute terms than kPt,3, suggesting that the risk-neutral distribution is more

negatively skewed than the physical one. Fourth-order cumulant estimates are positive for both

measures. The fact that kQt,4 are generally higher than k
P
t,4clearly attests to the relatively fatter tails

of the risk-neutral distribution. The correlation coeffi cient between cumulants of the same order

is very high and it decreases proportionally to n. Thus, any change in the shape of the physical

12



distribution should be also reflected, through a pricing kernel, to the shape of the risk-neutral one.

An interesting feature in Figure 1 is the variability of risk-neutral and physical cumulants which

consistently increase in absolute value during periods of financial crises (e.g. the Asian currency

crisis, the Russian default, the burst of the Dot-Com bubble and Lehman Brother’s default) or

unexpected events (e.g. the attack on the World Trade Center on 9/11).

The average values of physical and risk-neutral cumulants estimates reported in Table 2 are

in accordance with the predictions of the theoretical models (3) and (4). The observed negative

average variance risk premium kPt,2 − kQt,2 can be explained by the negative average physical or

risk-neutral third-order cumulant estimates and the positive physical or risk-neutral fourth-order

cumulant estimates, according to equation (8) or (9), respectively. Similarly, the positive average

third-order cumulant risk premium kPt,3 − k
Q
t,3 can be explained by the positive average physical or

risk-neutral fourth-order cumulant estimates, according to equation (10) or (11), respectively.

4.3 Projected relative risk aversion coeffi cient estimates

To estimate the PRRAC γ we employ orthogonality conditions (14) for M = 2 to 5 and N = 2 to

5. For N = 2 and M = 2, we estimate γ from the single-equation moment restriction

E

[
kPt,2 − k

Q
t,2 − γkPt,3 +

γ2

2!
kPt,4

∣∣∣∣ It−1

]
= 0, (16)

that explains variance risk premium kPt,2 − k
Q
t,2 using only two additional higher than second-order

physical cumulants, i.e, kPt,3 and k
P
t,4. Bakshi and Madan (2006) and Duan and Zhang (2014) adopted

in effect this specification, which is why we consider this as our model comparison benchmark in the

following sections. The competing estimation specifications are produced by sequentially increasing

both the number of regressors and the number of equations in the system, setting M = 3, 4 and

5 and N = 3, 4 and 5, respectively. For example for N = 2 and M = 5 we estimate γ again from

the single-equation orthogonality condition restricting the variance risk premium to include five

additional higher than second-order physical cumulants, i.e.,

E

[
kPt,2 − k

Q
t,2 +

5∑
m=1

(−γ)m

m!
kPt,m+2

∣∣∣∣∣ It−1

]
= 0. (17)

For N = 3 and M = 2 we estimate γ by the following system of two equations given as

E

[
kPt,2 − k

Q
t,2 − γkPt,3 + γ2

2! k
P
t,4

kPt,3 − k
Q
t,3 − γkPt,4 + γ2

2! k
P
t,5

∣∣∣∣∣ It−1

]
= 0, (18)

which now restricts the variance and third-order cumulant risk premia simultaneously. For robust-

ness check, we also estimate γ for specifications of the same order, using this time orthogonality

conditions (15). If the theoretical model is correctly specified, then the estimates of γ should be
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qualitatively similar under both econometric setups (14) and (15).

Starting from the premise that the PRRAC is time-varying and related to business cycle indi-

cators (see Bliss and Panigirtzoglou (2004)), we estimate γ using a 6-year moving window of data

updated monthly. More specifically, the estimate of γ at the observation date t is obtained using

6-year data prior to and including t resulting in 72 monthly observations of the relevant variables for

the GMM estimation on that data point.8 Note here that because of the 6-year rolling window of

data used, the estimation period for γ spans the time period from December 2001 to October 2010.

Three sets of instruments are used in the GMM estimation procedure for (14). The first contains

the constant and one period lagged values of kQt,2, k
Q
t,3, k

Q
t,4 and k

Q
t,5 for the first, second, third and

fourth equation of the system, respectively. The second and third set of instruments use in addition

to the first, two and two and three periods of lagged values of the same variables, respectively. For

(15) we use a similar structure for the three sets of instruments where the risk-neutral cumulants

are now replaced with the corresponding physical ones. The estimation results from the three sets

of instruments are similar for both econometric specifications, therefore we only report those from

using the third one.

Table 3 reports descriptive statistics of the estimation results, across the sample period, for

both specifications, (14) and (15) and for different values of N and M . More precisely, it reports

the average, standard deviation, minimum and maximum values of the estimates of γ. It also

reports the average standard error and the average and minimum values of p-value of Hansen’s

overidentified restriction test. If the null hypothesis of this test is rejected then this will indicate

that the estimated model is misspecified. The source of misspecification can be the existence of

an alternative class of pricing kernels, the number of equations in the system, or the order of

approximation of the theoretical formulas (3) and (4).

Several conclusions can be drawn from the results of Table 3. To start with, the estimates

of γ, for all different specification examined, are intuitively sensible, statistically significant and

comparable with the results of other recent studies that estimated γ jointly from stock and option

data.9

Second, we observe that the inclusion of extra regressors (i.e. by increasing M) decreases the

level of γ and its standard error. This is true for all N and M in (14) and for all N provided that

M ≤ 4 in (15). This result indicates that lower-order approximations of the theoretical formulas

tend to produce inconsistent estimates of the PRRAC.10 The decrease in standard errors with

8We have also performed the GMM estimation procedure using different sizes of moving window of data. These
preliminary results indicate that the 6-year moving window provides a smooth series of time-varying estimates of γ
for both econometric specifications with the smallest number of time series observations. Even when we used a larger
size moving window of data, the estimates of γ are similar to those reported in the paper.

9Several recent papers have estimated γ using stock and options data from the S&P 500 index. For example,
Rosenberg and Engle (2002) reported an estimate of γ close to 7, Bliss and Panigirtzoglou (2004) reported an
estimate close to 4, Rompolis and Tzavalis (2010) reported an estimate close to 1.3 and Duan and Zhang (2014)
reported an estimate close to 4.
10A likely source of this inconsistency could be the fact that the instruments used are not orthogonal to the error

term in low-order approximations. Indeed, the higher-order cumulants that are excluded from the regression, being

14



respect to M indicates that the additional regressors have explanatory power on the dependent

variables. Only for specification (15) we observe that a fifth-order expansion (M = 5) of risk-

neutral cumulants provide less accurate estimates of γ compared to lower-order approximations.

This indicates that for specification (15) we cannot increase the order of expansion M arbitrarily.

This is something to expect as risk-neutral cumulants estimates of a very high order calculated

from option prices may be significantly biased.11 In contrast, specification (14) does not seem to

suffer from these constraints, as it is based on the expansion of physical cumulants. The latter

correspond to the sample cumulants of the monthly returns simulated from the FHS method, and

thus they are much better behaved. Thus, even if both theoretical models (3) and (4) provide

an equivalent framework to estimate γ, formula (3), that this paper demonstrates, provide an

econometric specification which tend to give more robust estimates of γ.

Third, the inclusion of new equations (i.e. increasing N) in the GMM estimation procedure

further decreases standard errors. This is true for all M and for both specifications examined. As

already argued, this result is very intuitive because it indicates that the inclusion of new information

describing in detail the discrepancy between the physical and risk-neutral distribution makes the

estimator of γ much more effi cient.

Fourth, the overidentified restrictions afforded by the modeling structure are rejected for several

observation dates at the 5% significance level for small numbers of N . However, for N > 4 (that

is, for at least a three-equations system) these restrictions are not rejected across all observation

dates. This evidence further suggest that the augmented model constitutes a correct specification

of the data.

As an illustration, Figure 2 plots the series of the estimates of γ across the sample period for

three different specifications. The first one corresponds to that used by Bakshi and Madan (2006)

and Duan and Zhang (2014) (i.e., (14) for N = 2 and M = 2) which we use as the benchmark for

the comparison we make. The second and third series of estimates γ are produced by higher-order

specifications (i.e. setting N = 4 and M = 4 in (14) and (15), respectively).12 Plot A of Figure 3

plots the estimates of the benchmark model against the 95% confidence interval produced by the

more general specification (i.e., (14) for N = 4 and M = 4), while Plot B plots the estimates of the

latter two series against the 95% confidence interval of the benchmark specification.

Inspection of these two figures confirms that the PRRAC varies smoothly across time, which

is something already reported in the literature. The highest value for γ in our sample period

is obtained on September 2007 for all three specifications. Not by coincidence, this observation

correlated with the lower-order ones and persistent, can be in effect correlated with the instruments. If the model
includes a large number of cumulants, then the ones that enter the error term pose a relatively smaller problem given
that they are less persistent, and thus they are more likely to be orthogonal to the instruments.
11This is due to the fact that as the order of the estimated risk-neutral cumulant increases the dependence of its

value on deep-OTM option prices which are not traded in the market also increases. In the numerical procedure that
we use, these unobserved option prices are captured by the constant extrapolation scheme of the implied volatility
function.
12Similar graphs are generated from the other estimated specifications of the model.
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corresponds to the beginning of the recent financial crisis. It is in that turning point, when investors

realized that a period of expansion has ended and the economy will move into recession, that they

became more risk averse.13 From this period onward we observe a sharp decrease in the estimates of

γ reaching its lowest value (i.e., close to 1.5) on October 2008, i.e., at the period following Lehman

Brother’s default. This positive investors reaction could be due to the emergency government

programs announced and implemented during September-October 2008 to assist the financial sector,

including the temporary guarantee program of the US Treasury for money market funds, the Fed

program to lend against high-quality asset-backed commercial papers, and most importantly the

Troubled Asset Relief Program (TARP) and measures of quantitative easing such as large-scaled

asset purchases (LSAPs). After this period, γ increases sharply close to 2.5 and remains constant

until the end of the sample period.

Also in the same figures, we see all three series of the estimates of γ moving in conjunction.

More notably, the series produced by the higher-order specifications (albeit from different theoretical

model) being very close together appear lower in value, more stable and arguably more accurate

as estimates of γ. In support of this last point in particular, the results reported in Plot A of

Figure 3 show that the estimates of the benchmark specification are often located outside the

(tighter) confidence interval of its higher-order counterpart; thus implying that Duan and Zhang’s

(2014) approach leads to estimates of the PRRAC which strongly deviate from the true parameter,

especially during the financial crisis period. In contrast, the estimates generated from the two

more general specifications considered, lie by and large within the (wider) confidence interval of

the benchmark (see Plot B of Figure 3).

Overall, the results described in this section signify that the accurate estimation of γ under the

theoretical models (3) and (4) requires a higher-order approximation of the series expansions and

a larger number of equations in the estimation procedure compared to the ones used by Bakshi

and Madan (2006) and Duan and Zhang (2014). The fact that the estimates of γ are robust to the

choice of the econometric specification (i.e, (14) and (15)) further supports this argument.

4.4 Ex-ante market risk premium estimates

Using the estimates of γ along with higher-order physical and risk-neutral cumulants we can com-

pute ex-ante estimates of the S&P 500 index risk premium for each observation date for an invest-

ment horizon of 1 month. To do so, we employ a third-order approximation of formula (5) and

(7).14 Table 4 reports sample descriptive statistics of annualized ex-ante MRP estimates for the

different model specifications employed in the estimation of the PRRAC. Figure 4 plots the time

13 In terms of the theoretical model this is due to the fact that the increase in the magnitude of risk-neutral
cumulants on September 2007 could not be explained by an analogous increase of the physical ones.
14These approximations are given as:

kPt,1 − kQt,1 ' γk
P
t,2 −

γ2

2!
kPt,3 +

γ3

3!
kPt,4
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series of these estimates for the three specifications used in Figure 2.

Several conclusions can be drawn from the results of Table 4 and Figure 4. First, the annualized

MRP is always positive, time-varying and counter-cyclical, showing high variability, during the

sample period, from around 1% to around 100%. As expected it increases during the two financial

turmoil periods, i.e., the burst of the Dot-Com bubble in 2002 and the sub-prime mortgage crisis

(2007 to 2009). During the later period we observe a steady increase of the MRP during the second

semester of 2007. This is attributed to the high values of γ during this period and the steady increase

of physical and risk-neutral cumulants. Its highest value, in our sample, is observed on November

2008 (around 100%). It is very interesting that the magnitude of this value is now dominated by

the very high levels in the physical and risk-neutral cumulants, kPt,j , k
Q
t,j for j = 2, 3, 4 (see Figure

1). This implies that, during the recent financial crisis changes in the MRP can be distilled into

different set of factors: In 2007 MRP increased mainly because investors raised their level of aversion

towards risk, while in 2008 it increased because investors perceived very significant probability of

extreme losses. Second, the first-order autocorrelation, denoted as R(−1), of the annualized MRP

is highly positive indicating the persistence of it. Third, reflecting on the estimates of γ reported in

Table 3, we observe that the values and variability of the MRP decreases as M and/or N increase.

Also, the estimates of the MRP obtained by applying formulas (5) and (7) are close to each other,

providing evidence that the theoretical model is consistent with the data.

The average, across our sample, annualized MRP which is around 14% for (14) and 17.5% for

(15) can give us an estimate of the unconditional MRP. It worth comparing this estimate with that

implied by the realized levels of higher-order physical cumulants. Using sample monthly returns

from 2001 to 2010 we estimate a realized level of variance equal to 0.0022 and a realized level of

third and fourth-order cumulants equal to -0.00008 and 0.000006, respectively. These estimates are

significantly lower in magnitude compared to the average levels of the ex-ante physical cumulants

reported in Table 2. For example, the realized third-order cumulant across the whole sample is

68% lower in absolute value compared to the average level of the conditional ex-ante third-order

cumulant. Combining these sample statistics with a third-order approximation of equation (5), we

obtain a value for the unconditional MRP close to 8%.15 This estimate approximately matches

the historical average MRP of between 4% and 9% (depending on the sample period) reported by

Mehra and Prescott (2003). Thus, the average MRP obtained from the ex-ante cumulant estimates

is close to twice that obtained from the ex-post ones. This result provides evidence that a significant

part of the ex-ante MRP is due to a level of risk which, even if it is priced in the market (in a

and

kPt,1 − kQt,1 ' γk
Q
t,2 +

γ2

2!
kQt,3 +

γ3

3!
kQt,4,

respectively. Note here that the inclusion of higher than fourth-order physical or risk-neutral cumulants in the above
expansions has a marginal effect on the estimates of the MRP.
15This unconditional risk premium relies on an ex-post estimate of γ equal to 2.74. This is retrieved by employing

the previous econometric framework, i.e, orthogonality conditions (14) for M = 2 and N = 4, for the full sample of
physical and risk-neutral cumulants observations. This estimate of γ is robust to different econometric specifications
of the model.
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forward-looking basis), it accounts for bad states of the economy that will not be materialized in

the sample (the well-known peso problem, see for example Brown, Goetzmann and Ross (1995) and

Santa-Clara and Yan (2010), inter alia). This risk component is embedded in both option prices

(which is reflected in the risk-neutral cumulants) and the shape of the forward-looking conditional

distribution of market log-returns (which is summarized in the ex-ante physical cumulants) and as

a quantity far exceeds the unconditional realized variation in stock market returns.

5 The estimated expected returns in the context of the present

value identity

To examine the validity of the ER estimates we have obtained in the previous sections, we suggest a

new approach based on the present value identity. This identity relates the observed dividend-price

ratio to both ERs and expected dividend growth rates. The crucial benefit in undertaking this

exercise draws from the fact that it produces results, which are by construction independent of the

pricing kernel we have assumed. Equally importantly, it is applied on a dataset (i.e., the realized

dividends of the S&P 500 index) that has not been used in the estimation of ERs, and as such it

cannot have affected our estimates.

This part of our empirical analysis can also be seen as an alternative way of examining the

relation between stock price movements, ERs and expected dividend growth rates. However, rather

than rely on the traditional predictive regressions (see Cochrane (2011) for a review), we regress

current estimates of market ERs, retrieved in the previous section, on the current dividend-price

ratio controlling for the effect of dividend growth rates. This method is consistent with theory,

which as a matter of fact is founded on a contemporaneous relation between dividend-price ratio

and ER.

An important advantage of our approach is that, being essentially ex-ante, it is liable to capture

the risk component related to the peso problem. On the contrary, a predictive regression based by

construction on the ex-post sample, would have no way of doing this.

5.1 The present value identity

To avoid cluttering the reader with data, we present results for ER estimates produced by speci-

fications (14) with N = M = 2 (referred to as model (M1) henceforth), and N = M = 4 (model

(M2)) and (15) with N = M = 4 (model (M3)) for the remainder of the paper. Model (M1) is the

benchmark model derived by Duan and Zhang (2014), while (M2) and (M3) should in theory be

equivalent specifications in terms of their informational content.16

Let rt,t+i = ln (St+i/St) denote the log-return without dividends between dates t and t+ i , for

i = 1, 2, ... months. Then, we define as xt ≡ kPt,1 = EPt [rt,t+1], i.e., the 1-month ahead ER estimated

16The results of this section are quite robust when derived from ER estimates obtained from system specifications
of different order. These are available from the authors upon request.
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at time t. Let also ∆dt,t+i = ln (Dt+i/Dt) be the realized dividend growth rate between dates t and

t+ i, gt = EPt [∆dt,t+1] the 1-month ahead expected dividend growth rate and dpt = ln (Dt/St) the

log dividend-price ratio.

Starting from the identity dpt = rt,t+1− ∆dt,t+1 + dpt+1 and requiring that lim
j→∞

dpt+j = 0, i.e.,

the dividend-price ratio does not explode, and finally take conditional expectations under physical

measure P we can prove the following present value identity:

dpt =
∞∑
j=0

EPt [rt+j,t+j+1]−
∞∑
j=0

EPt [∆dt+j,t+j+1] . (19)

Formula (19) indicates that the dividend-price ratio is associated with both ERs and expected

dividend growth rates. The dividend-price ratio increases (which means that price decreases) when

ERs increase and/or expected dividend growth rates decrease. Note here that formula (19) is

not exactly the same to the well-known Campbell-Shiller (1988) present value relation, as we use

without-dividends returns instead of total returns. This is due to the fact that our model provides

estimates of ERs without dividends as the terminal payoff of European options depend on the index

level net of the accrued realized dividends. An additional advantage of this approach as compared

to the traditional present value relation, is that formula (19) is an identity rather than a log-linear

approximation.

By examining the properties (autocorrelation and partial autocorrelation functions) of the es-

timates of xt given by models (M1), (M2) and (M3), we conclude that in all three cases xt can be

modeled as an AR(1) process:17

xt+1 = ϕ0 + ϕ1xt + εxt+1. (20)

The least squares estimates of this model are given in Panel A of Table 5. Following the relevant

literature we also assume that gt follows an AR(1) process (see Van Binsberger and Koijen (2010),

inter alia), i.e.,

gt+1 = θ0 + θ1gt + εgt+1. (21)

Then, formula (19) can be written as:

dpt = κ+
1

1− ϕ1

xt −
1

1− θ1
gt, (22)

where κ is a constant. The proof of the previous formula is provided in the Appendix. Formula

(22) relates the dividend-price ratio with the 1-month ahead ER and dividend growth rate. As xt
is now an observed variable we can directly examine the effect of ERs and dividend growth rates

17This empirical result is also consistent with several studies which also assumed that xt ∼ AR(1) process (see
Cochrane (2008), inter alia).
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on the dividend-price ratio by writing (22) as a contemporaneous linear regression model:

dpt = κ̃+
1

1− ϕ1

xt −
θ1

1− θ1
∆dt−1,t + ut, (23)

where κ̃ is a constant and ut = 1
1−θ1

(
θ1ε

∆d
t − ε

g
t

)
, where ε∆d

t is the forecast error of ∆dt−1,t.

5.2 Empirical application

To estimate equation (23) we use the three ER series, (M1), (M2) and (M3), described previously.

We obtain monthly dividends for the S&P 500 index from Robert Shiller’s website.18 Using these

dividends and the index price at the day t for which xt is estimated (i.e., the third Wednesday

of each month) we calculate the dividend-price ratio. To estimate the econometric counterpart of

formula (23) given as:

dpt = β0 + β1xt + β2∆dt−1,t + ut, (24)

we have to take into account the fact that at least one of the explanatory variables is, according

to the theory laid out in the previous section, correlated with the error term ut.19 Consequently,

the OLS estimator should be biased and inconsistent. Moreover preliminary results, which can

be provided by the authors upon request, indicate that both explanatory variables seem to be

endogenous themselves implying that we cannot use simple OLS to determine their impact on the

variation of the dividend-price ratio. We therefore use the weighted GMM estimator with the

heteroskedasticity and autocorrelation consistent (HAC) weighting matrix sequentially updated

until convergence is achieved.20 Given that all variables are highly persistent we allow the error

term ut to follow an AR(1) process. For robustness check, we also estimate (24) using a two-stage

least squares (2-SLS) approach as it is widely known that the GMM estimator can exhibit a number

of pathologies due to weak instrument identification problems.

The estimation results are reported in Panel B of Table 5. These indicate that both xt and

∆dt−1,t are statistically significant at the 1% level. Their variation can explain approximately 90%

of the variation of dpt. The coeffi cient estimates enter into the equation with the correct sign. More

specifically, an increase in the 1-month ER is associated with an increase in the dividend-price ratio,

whereas an increase in the dividend growth rate is followed by a decrease in the dpt. More notably,

the estimates of β1 reported in Table 5 is very close to that expected by the AR(1) structure of

18See http://www.econ.yale.edu/~shiller/data.htm.
19 It is straightforward to verify that the contemporaneous model (23) posits that the covariance of error term ut

with ∆dt−1,t is non-zero given that the former contains the forecast error of the latter.
20The instruments used in the GMM estimation procedure are the 2 lags of all three variables, i.e.

(dpt−1, dpt−2,∆dt−2,t−1,∆dt−3,t−2, xt−1, xt−2). This choice ensure that we are not missing information due to pos-
sible feedback effects between them and is in line with Fair’s (1970) result. The latter indicates that when using the
iterative Cochrane-Orcutt procedure to estimate a model, the lags of all dependent and independent variables have
to be included in the instruments set so as to produce consistent estimates. The Eichenbaum, Hansen and Singleton
(EHS) test which assesses the orthogonality condition of a subset of the instruments shows that the second lags of
all variables are not necessary (the p-value of the null hypothesis was well above 0.10 in all three cases).
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xt, i.e., 1
1−ϕ1

, for the ER series estimated by models (M2) and (M3). Indeed, for the case of (M2)

and (M3) we have that 1
1−ϕ̂1

is equal to 3.7 and 4.76, respectively (see Panel A of Table 5). This is

not what happens however, with the ER series produced by the benchmark model (M1) of Duan

and Zhang (2014): While the level of persistence in fitted the AR(1) model calls for an expected

coeffi cient of 3.57 the estimated β1 (equal to 2.26) is almost 2 standard errors away from that value,

implying that this particular series fails to satisfy the present value identity. Apart from this, our

results generally indicate that, at least for our sample period, the variation of the dividend-price

ratio is due to the variation of both ERs and expected dividend growth rates.

6 Conclusion

This paper finds that the estimation of the market ER and the associated ex-ante MRP benefits

significantly from the inclusion of additional information about the shape of physical and risk-

neutral distributions, and the shape discrepancy between the two.

We can describe the benefits along two dimensions: First, statistically, GMM specification tests

of overidentifying restrictions indicate that a single equation framework for the estimation of the

PRRAC, as used in the previous literature, is not always supported by the data. When, on the

contrary, we exploit additional information by increasing the number of equations in the system,

the GMM estimator becomes considerably more effi cient. At the same time, model specifications of

low-order approximation, that lack in the shape information embedded in higher-order cumulants,

appear to produce inconsistent estimates of the PRRAC in certain cases.

Second, economically, our empirical evidence suggests that ER estimates produced from the

augmented information sets, are the more plausible, given that they satisfy, almost perfectly, the

present value identity. It is important to stress here, that this approach can be considered as an

objective measure of comparison as it is independent of the framework employed for the estimation

of ERs.

Our results are very important because they imply that a richer description of the shape of

return distributions improves both statistically and economically the estimation of the ER and the

associated MRP. Given the central role of the MRP in asset pricing theory and risk-return decision

making, the suggested estimation method can be of particular interest both for researchers and

practitioners.

A Appendix

In this appendix, we provide proofs of the main theoretical results of the paper
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A.1 Proof of Proposition 1

To prove formula (3) take the nth-order derivative of (2) with respect to u evaluated at u = 0 which

gives: [
dnmQ

t (u)

dun

]
u=0

=

[
dnmP

t (u− γ)

dun

]
u=0

, ∀ n ∈ N. (25)

By definition the nth-order cumulant of rt,T under the risk-neutral measure is equal to kQt,n =[
dnmQ

t (u)
dun

]
u=0

. Also writing mp
t (u− γ) in a power series expansion as

mP
t (u− γ) =

∞∑
m=1

kPt,m
(u− γ)m

m!
(26)

and calculating the nth-order derivative yields[
dnmP

t (u− γ)

dun

]
u=0

=
∞∑
m=0

kPt,n+m

(−γ)m

m!
. (27)

Substituting formulas (26) and (27) into (25) yields

kQt,n =

∞∑
m=0

kPt,n+m

(−γ)m

m!
, ∀ n ∈ N,

which is exactly formula (3).

A.2 Proof of formula (22)

Given that xt and gt follow an AR(1) process we can easily prove that:

EPt [rt+j,t+j+1] = EPt [xt+j ] = ϕ0

1− ϕj1
1− ϕ1

+ ϕj1xt, (28)

and

EPt [∆dt+j,t+j+1] = EPt [gt+j ] = θ0
1− θj1
1− θ1

+ θj1gt. (29)

Also note that if we take conditional expectations under P on the identity dpt = rt,t+1−
∆dt,t+1 + dpt+1we have that dpt = xt− gt + EPt [dpt+1]. Taking unconditional expectations yields

EP [dpt] = EP [xt]− EP [gt] + EP [dpt+1], which is equivalent to EP [xt] = EP [gt]⇒ ϕ0
1−ϕ1

= θ0
1−θ1 ,

if the dividend-price ratio is a stationary process.

Substituting formulas (28) and (29) and the stationarity condition for dpt into formula (19)

yields:

dpt = κ+
1

1− ϕ1

xt −
1

1− θ1
gt,
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where κ = − ϕ0
(1−ϕ1)2

+ θ0
(1−θ1)2

, which is exactly formula (22).
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Table 1: Selected model frequency

Mean Equation Frequency Variance Equation Frequency
ARMA(0,0) 75% EGARCH(1,1) 70%
ARMA(0,1) 14% EGARCH(2,2) 15%
ARMA(1,0) 8% GJR(1,1) 9%
ARMA(1,1) 3% GARCH(1,1) 6%

This table reports the specifications selected (among the 688 candidate models on each observation date)
during our flexible-model Filtered Historical Simulation procedure, as well as their corresponding frequency
of selection. The first two columns display the models selected for the mean equation and the last two the
models selected for the variance equation.
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Table 2: Descriptive statistics

Risk-neutral Physical Correlation (%)
Variance 0.004638 0.003112 94

(0.005310) (0.003583)
3rd-order cumulant -0.000605 -0.00027 93

(0.001226) (0.000588)
4th-order cumulant 0.000164 0.000068 87

(0.000398) (0.000223)
Annualized Volatility 21.68 17.61

Skewness -1.53 -0.96
Kurtosis 7.99 5.37

This table reports average values of second, third and fourth-order cumulants of the physical and risk-
neutral distribution. Standard deviations are in parentheses. The last column of the table presents the
correlation coeffi cient between the respective risk-neutral and physical cumulants. The table also presents
the average annualized volatility (in percentage points) and the average skewness and kurtosis coeffi cients
derived from the physical and risk-neutral cumulants, respectively. Risk-neutral cumulants are estimated
directly from S&P 500 index option prices with approximately 1 month time-to-maturity using equation (13).
Physical cumulants are estimated by the FHS method employed to daily index returns. The estimation period
span from January 1996 to October 2010.
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Table 5: Estimation results for the present value identity

Model M1 M2 M3
Panel A: LS estimates of model (20)

ϕ0 0.0037 0.0028 0.0027
(3.08) (3.11) (2.7)

ϕ1 0.72 0.73 0.79
(10.58) (10.89) (12.95)

R2 0.52 0.53 0.62
1

1−ϕ1
3.57 3.7 4.76

Panel B: Estimation results for equation (24)
W-GMM 2-SLS W-GMM 2-SLS W-GMM 2-SLS

constant -3.89 -3.92 -3.86 -3.92 -3.94 -3.94
(-76.67) (-73.10) (-84.49) (-72.09) (-72.71) (-83.63)

xt 2.26 2.51 3.16 3.73 4.48 4.54
(3.61) (3.71) (2.97) (3.97) (6.18) (5.59)

∆dt−1,t -18.91 -14.59 -21.37 -14.66 -15.80 -15.12
(-3.06) (-2.23) (-3.59) (-2.18) (-2.26) (-3.04)

ρ 0.85 0.89 0.85 0.89 0.85 0.88
(18.17) (13.77) (14.74) (13.64) (16.74) (16.74)

R2 0.88 0.91 0.86 0.91 0.92 0.93
DW 1.77 1.74 1.78 1.74 1.87 1.92

This table reports the estimation results for the present value identity. Panel A reports least squares
(LS) estimates of model (20). Panel B reports the results of estimating equation (24). The ERs used in this
empirical application were provided by three different system specifications. The first one (denoted as (M1))
corresponds to specification (14) with N = 2,M = 2. The second one (denoted as (M2)) corresponds to the
same specification with N = 4,M = 4, and the third one (denoted as (M3)) corresponds to specification
(15) of the same size. We estimate equation (24) using both the weighted GMM estimator (W-GMM) and
the two-stage least squares estimator (2-SLS) allowing the error term to follow an AR(1) process with
autoregressive coeffi cient ρ. In both cases, the instrument list contains the two lags of the dependent and
all independent variables. In both panels t-statistics are reported in parentheses. DW denotes the Durbin-
Watson test statistic. The estimation period span from December 2001 to October 2010.
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Figure 1: Time series monthly estimates of conditional variance, third and fourth-order cumulants of
log-return distribution under physical and risk-neutral distributions from January 1996 to October
2010.
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Figure 2: Projected relative risk aversion coeffi cient estimates, December 2001 to October 2010.
Model 1 corresponds to econometric specification (14), while model 2 corresponds to (15). The
vertical solid lines indicate the recent NBER recession period. The vertical dashed line indicate
Lehman Brother’s default date, i.e, September 2008.
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Figure 3: Projected relative risk aversion estimates and confidence intervals, December 2001 to
October 2010. Plot A presents the estimates of the benchmark model (i.e., (14) with N = M = 2)
against the 95% confidence interval produced by its higher-order counterpart with N = M = 4.
Plot B presents the estimates of specifications (15) and (14) with N = M = 4 against the 95%
confidence interval of the benchmark model. The vertical solid lines indicate the recent NBER
recession period. The vertical dashed line indicate Lehman Brother’s default date, i.e, September
2008.
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Figure 4: Annualized ex-ante risk premium estimates of the S&P 500 index produced by different
specifications, December 2001 to October 2010. Model 1 corresponds to econometric specification
(14), while model 2 corresponds to (15). The vertical solid lines indicate the recent NBER recession
period. The vertical dashed line indicate Lehman Brother’s default date, i.e, September 2008.
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